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Abstract

In this paper we explore the local and global properties of multisymplectic discretizations based on finite differences

and Fourier spectral approximations. Multisymplectic (MS) schemes are developed for two benchmark nonlinear wave

equations, the sine-Gordon and nonlinear Schr€odinger equations. We examine the implications of preserving the MS

structure under discretization on the numerical scheme�s ability to preserve phase space structure, as measured by the

nonlinear spectrum of the governing equation. We find that the benefits of multisymplectic integrators include im-

proved resolution of the local conservation laws, dynamical invariants and complicated phase space structures.
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1. Introduction

Multisymplectic integrators, i.e. numerical schemes which exactly preserve a discrete space–time sym-

plectic structure, are a new approach to solving Hamiltonian PDEs [3,4,14]. Since the use of multisym-
plectic integrators is a relatively recent development, to date much of the literature has been devoted to

establishing that various discretization methods (e.g. Fourier spectral, Gauss–Legendre collocation, finite

volume) have subclasses which are multisymplectic [3,4,9,10]. Multisymplectic variational integrators based

on Hermite type finite element bases have also been developed [13]. However, a thorough analysis of the

local and global properties of multisymplectic integrators has yet to be carried out.

Preservation of the multisymplectic structure by a numerical scheme does not imply preservation of

other dynamical invariants of the system such as the local conservation laws or of global invariants which
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determine the phase space structure. A question that immediately arises then is, to what extent are the other

invariants of the system preserved? In long time studies of low-dimensional Hamiltonian ODEs, symplectic

integrators capture global phase space structures better than standard integrators which allow the actions
to drift [8]. Thus it is reasonable to expect that this behavior might carry over to multisymplectic dis-

cretizations of Hamiltonian PDEs.

Recent numerical experiments using multisymplectic (MS) integrators to solve nonlinear wave equations

suggest that the local conservation laws are preserved very well, although not exactly, over long times [3,10].

Specifically, using a MS finite-difference discretization of the nonlinear Schr€odinger (NLS) equation, our

numerical studies demonstrate that the local energy and momentum conservation laws are preserved far

better than expected, given the order of the scheme. In addition, several global invariants are preserved

within roundoff (see Section 5).
Nonlinear wave equations such as the NLS and sine-Gordon (SG) equations can have a complicated

phase space structure, depending on the type of boundary conditions considered. In this case, MS finite-

difference schemes can have difficulty in resolving spatial structures in very sensitive regimes. Even so, we

find that the local conservation laws are important indicators of spatial discretization errors which can

corrupt the solution and, as such, provide additional insight into the qualitative behavior of the numerical

scheme. Alternatively, spectral methods have proven to be highly effective methods for solving evolution

equations. As the number N of space grid points increases, errors typically decay at an exponential rate

rather than at polynomial rates obtained with finite-difference approximations [7]. Not surprisingly, MS
spectral methods outperformMS discretizations based on finite differences and are the method of choice for

sensitive regimes and multi-dimensional problems [12].

In this paper we examine the preservation of phase space structures by MS spectral methods for two

benchmark problems, the NLS and SG equations. These equations are completely integrable (integrability

is established using a Lax pair, Eq. (15)) and their phase space geometry is specified in terms of the non-

linear spectrum of the spatial operator of the associated Lax pair. We implement MS and non-symplectic

spectral methods for the NLS and SG equations and exploit the nonlinear spectrum as a basis for com-

paring the effectiveness of the integrators in capturing the phase space dynamics. The relevant quantities to
monitor are the periodic/antiperiodic eigenvalues of the spectral problem. These eigenvalues are the spectral

representation of the action variables and are directly related to the geometry of the phase space. We find

that the nonlinear spectrum is a particularly insightful tool for analyzing the qualitative behavior of the

numerical schemes and we advocate its general use in further studies of geometric integrators. Other classes

of PDE integrators can be tested on integrable systems, using the nonlinear spectrum as a diagnostic to

address various questions on phase space preservation (e.g. how well stable tori are preserved, what is the

width of chaotic layer that appears when unstable tori break up, etc.).

Significantly, we show that MS spectral methods provide an improved resolution of the LCLs, of the
nonlinear spectrum and phase space structure, and the qualitative features of the solutions, when compared

with non-symplectic spectral integrators. Consequently, we find that conservation of multisymplecticity by

a numerical scheme does result in an improved preservation of the phase space structure. This is the first

examination of the implications, in terms of preservation of the phase space structure and the nonlinear

spectrum, of preserving the MS structure under discretization and provides a deeper understanding of the

local and global properties of MS integrators.

The paper is organized as follows: in Section 2 we recall the MS formulation of Hamiltonian PDEs and

of the NLS and SG equations. We present a description of their phase space geometry in terms of the
associated nonlinear spectral theory. We provide the elements of the integrable theory which are relevant

for interpreting the ability of the numerical schemes to preserve the phase space structure. In Section 3 we

introduce the multisymplectic box scheme, apply it to the NLS, and discuss it�s properties. In Section 4 we

establish that spectral discretizations yield another class of multisymplectic integrators and discuss their

conservation properties. We prove that if SðzÞ is quadratic, then the MS spectral scheme conserves the
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LCLs exactly. We obtain MS spectral discretizations for the NLS and SG equations. The numerical

experiments, which illustrate the remarkable behavior of MS schemes, are discussed in Section 5. In par-

ticular, we examine how the preservation of the LCLs and the phase space structure depends upon the
multisymplectic property of the numerical scheme.
2. Background

2.1. Multisymplectic formulation of Hamiltonian PDEs

A Hamiltonian PDE (in the ‘‘1 + 1’’ case) is said to be multisymplectic if it can be written as

Mzt þ Kzx ¼ rzS; z 2 Rd ; ð1Þ

where M;K 2 Rd�d are skew-symmetric matrices and S : Rd ! R is a smooth function of the state variable

z [1,3]. The variational equation associated with (1) is given by

M dzt þ K dzx ¼ Szz dz: ð2Þ

The term multisymplectic is applied to system (1) in the sense that associated with M and K are the two

forms

x ¼ 1

2
ðdz ^M dzÞ; j ¼ 1

2
ðdz ^ K dzÞ; ð3Þ

which define a space–time symplectic structure (i.e. symplectic with respect to more than one independent

variable).

Any system of the form (1) satisfies conservation of symplecticity. Let dz be a solution of the variational

equation (2). Then it can be shown that x and j, as defined in (3), satisfy the multisymplectic conservation

law (MSCL)

otxþ oxj ¼ 0: ð4Þ

Symplecticity is a global property for Hamiltonian ODEs; in contrast, it is a local property for Hamiltonian

PDEs. The MSCL (4) expresses the fact that symplecticity can vary over the spatial domain and from time

to time. This variation is not arbitrary as the changes in time are exactly compensated by changes in space.

An important consequence of multisymplecticity is that when the Hamiltonian S is independent of x and
t, the PDE has local energy and momentum conservation laws (LECL and LMCL)

Et þ Fx ¼ 0; E ¼ S � 1

2
zTKzx; F ¼ 1

2
zTKzt;

It þ Gx ¼ 0; G ¼ S � 1

2
zTMzt; I ¼ 1

2
zTMzx:

ð5Þ

Note that S itself is not preserved. For periodic boundary conditions, the local conservation laws (LCLs)

can be integrated in x to obtain global conservation of energy momentum.

2.1.1. Multisymplectic formulation of the model equations

The focusing one-dimensional nonlinear Schr€odinger (NLS) equation,

iut þ uxx þ 2juj2u ¼ 0; ð6Þ
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can be written in multisymplectic form by letting u ¼ p þ iq and introducing the new variables

v ¼ px;w ¼ qx [1]. Separating (6) into real and imaginary parts, we obtain the system

qt � vx ¼ 2 p2
�

þ q2
�
p;

� pt � wx ¼ 2 p2
�

þ q2
�
q;

px ¼ v;

qx ¼ w;

ð7Þ

which is equivalent to the multisymplectic form (1) for the NLS equation with

z ¼

p
q
v
w

0
BB@

1
CCA; M ¼

0 1 0 0

�1 0 0 0

0 0 0 0

0 0 0 0

0
BB@

1
CCA; K ¼

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

0
BB@

1
CCA;

and Hamiltonian S ¼ 1
2
½ðp2 þ q2Þ2 þ v2 þ w2�.

Implementing relations (5) for the NLS equation yields the LECL and LMCL laws

Et þ Fx ¼ 0; E ¼ 1

2
½ðp2 þ q2Þ2 � v2 � w2�; F ¼ vpt þ wqt;

It þ Gx ¼ 0; I ¼ pw� qv; G ¼ ðp2 þ q2Þ2 þ v2 þ w2 � ðpqt � ptqÞ:
ð8Þ

Additionally we have a norm conservation law for the NLS equation

Nt þMx ¼ 0; N ¼ 1

2
ðp2 þ q2Þ; M ¼ qv� pw: ð9Þ

These three equations, when integrated with respect to x, yield the classical global conservation of energy

(the Hamiltonian), momentum and norm defined as

d

dt
EðzÞ ¼ 0;

d

dt
IðzÞ ¼ 0;

d

dt
NðzÞ ¼ 0; ð10Þ

where EðzÞ ¼
R L
0
EðzÞdx, IðzÞ ¼

R L
0
IðzÞdx, NðzÞ ¼

R L
0
NðzÞdx.

The second nonlinear wave equation that we consider is the sine-Gordon equation

utt � uxx þ sin u ¼ 0: ð11Þ

By introducing the variables v ¼ ut and w ¼ ux, we obtain the system of equations

� vt þ wx ¼ sin u;

ut ¼ v;

� ux ¼ �w:

ð12Þ

System (12) can be written in standard multisymplectic form with

M ¼
0 �1 0

1 0 0

0 0 0

0
@

1
A; K ¼

0 0 1

0 0 0

�1 0 0

0
@

1
A; S ¼ 1

2
ðv2 � w2Þ � cos u; ð13Þ
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and z ¼ ðu; v;wÞT. The local energy and momentum conservation laws are simplified to

Et þ Fx ¼ 0; E ¼ 1

2
ðv2 þ w2Þ � cos u; F ¼ �vw;

It þ Gx ¼ 0; I ¼ �vw; G ¼ 1

2
ðv2 þ w2Þ þ cos u:

ð14Þ

The multisymplectic form of the sine-Gordon equation in Eqs. (11)–(13) has certain disadvantages. Firstly

the left-hand side (Mot þ Kox) has an infinite-dimensional kernel; secondly, there is a hidden constraint

which is not represented; and thirdly, the matrices M and K are both degenerate. It is now known that this

multisymplectic structure can be improved [2]. Starting with the canonical form of the Lagrangian for the

sine-Gordon equation (11)

L ¼
Z Z

Lðu; ut; uxÞdx ^ dt; Lðu; ut; uxÞ ¼ u2t � u2x � 1þ cosðuÞ;

the Legendre transform can be used to generate a new Hamiltonian functional

Sðu; v;wÞ ¼ vut þ wux � L ¼ v2 � w2 þ 1� cosðuÞ;

and a new Lagrangian for the system

L ¼
Z Z

Lðu; v;wÞdx ^ dt; Lðu; v;wÞ ¼ vut þ wux � Sðu; v;wÞ:

The governing equations are given by

0 ¼ Lu ¼ �vt � wx � Su;
0 ¼ Lv ¼ ut � Sv;
0 ¼ Lw ¼ ux � Sw;

using standard fixed endpoint conditions for the variations. These are the equations used in Eq. (12)

(modulo the sign change on w).
To improve this structure, observe that v and w satisfy the constraint wt þ vx ¼ 0. Adding this constraint

to the Lagrangian with Lagrange multiplier p, we obtain

L ¼
Z Z

~Lðu; v;w; pÞdx ^ dt; ~Lðu; v;w; pÞ ¼ Lðu; v;wÞ þ pðwt þ vxÞ:

The governing equations are now

0 ¼ ~Lu ¼ �vt � wx � Su;
0 ¼ ~Lv ¼ ut � Sv � px;
0 ¼ ~Lw ¼ ux � Sw � pt;
0 ¼ ~Lp ¼ wt þ vx;

or in multisymplectic canonical form
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0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

0
BB@

1
CCA

u
v
w
p

0
BB@

1
CCA

t

þ

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

0
BB@

1
CCA

u
v
w
p

0
BB@

1
CCA

x

¼

sinðuÞ
v

�w
0

0
BB@

1
CCA:
2.2. Integrable structure of the model equations

The integrability of the NLS equation (6) is established using the associated linear systems

LðxÞ/ ¼ 0; LðtÞ/ ¼ 0; ð15Þ

(the so-called Lax pair), where

LðxÞ ¼
d
dx þ ik �u
u� d

dx � ik

� �
; LðtÞ ¼

d
dt þ i½2k2 � juj2� �2ku� iux

2ku� � iu�x
d
dt � i½2k2 � juj2�

 !

and k is the spectral parameter. This system has a common solution /ðx; t; kÞ, provided the coefficient uðx; tÞ
satisfies Eq. (6).

Every NLS solution uðx; tÞ, as well as the NLS phase space, is characterized by the spectrum

rðuÞ :¼ fk 2 C jLðxÞv ¼ 0; jvj bounded 8xg of the associated linear operator LðxÞ [5]. For periodic

boundary conditions uðxþ L; tÞ ¼ uðx; tÞ, the spectrum is obtained using Floquet theory. The spectrum of u
can be written in terms of the transfer matrix Mðxþ L; u; kÞ across a period, where Mðx; u; kÞ denotes a
fundamental solution matrix of the Lax pair (15). Introducing the Floquet discriminant

Dðu; kÞ :¼ Trace½Mðxþ L; u; kÞ�, one obtains

rðuÞ :¼ k 2 C jDðu; kÞ 2 R;f � 26Dðu; kÞ6 2g: ð16Þ

The Floquet discriminant is analytic in both its arguments. Moreover, for a fixed k, D is invariant along

solutions of the NLS equation: ðdD=dtÞðu; kÞ ¼ 0: Since D is invariant and the functionals Dðu; kÞ, Dðu; k0Þ
are pairwise in involution, D provides an infinite number of commuting invariants for the NLS equation.

The Floquet spectrum (16) of a typical solution consists of bands of continuous spectrum with simple

periodic eigenvalues as endpoints (for example, finite-genus solutions are those with a finite number of bands
of continuous spectrum). The distinguished points of the periodic/antiperiodic spectrumare: (a) simple critical

points fksj jDðk; uÞ ¼ �2; dD=dk 6¼ 0g and (b) double points fkdj jDðk; uÞ ¼�2; dD=dk ¼0; d2D=dk2 6¼ 0g.
The periodic/antiperiodic spectrum provides the actions in an action-angle description of the system. The

values of these actions fix a particular level set. Let k denote the spectrum associated with the potential u.
The level set defined by u is then given by, Mu � fv jDðv; kÞ ¼ Dðu; kÞ; k 2 Cg. Typically, Mu is an infinite-

dimensional stable torus. However, the NLS phase space also contains degenerate tori which may be

unstable. If a torus is unstable, its invariant level set consists of the torus and an orbit homoclinic to the

torus. These invariant level sets, consisting of an unstable component, are represented, in general, by
complex double points in the spectrum. A complete and detailed description of the NLS phase space

structure is provided in [5].

The simplest example is the plane wave solution uðx; tÞ ¼ ae2ia
2t. The discriminant is readily computed to

be

Dða; kÞ ¼ 2 cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

p
LÞ: ð17Þ

The associated Floquet spectrum consists of the continuous bands R
S

½�ia; ia�, and a discrete part con-

taining the simple periodic/antiperiodic eigenvalues �ia, and the infinite sequence of double points
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k2j ¼
jp
L

� �2

� a2; j 2 Z: ð18Þ

Of these, if ½aL=p� ¼ M (where [p]¼ largest integer 6p, p > 0), 2M are complex (pure imaginary) double
points, while the remaining kj�s for jjj > M are real. The initial conditions used in the numerical study are

small finite-genus perturbations of unstable plane waves with one or two unstable modes (the ‘‘one-complex

double point regime’’); this is the case, provided ½aL=p� ¼ 1; 2. The condition for complex double points is

exactly the same as the condition for the solution to be linearly unstable.

The Floquet theory for the SG equation and a description of its phase space geometry in terms of the

nonlinear spectrum is formally analogous to that of NLS. Here we simply provide the spatial part of the

Lax pair for the SG equation [6]

LðxÞ ¼ A
d

dx

�
þ i

4
Bðux þ utÞ þ

1

16k
C � kI

�
;

where I is the identity matrix, u is the potential, k 2 C is the spectral parameter, and

A ¼ 0 �1

1 0

� �
; B ¼ 0 1

1 0

� �
; C ¼ eiu 0

0 e�iu

� �
:

As an example, consider the solution uðx; tÞ ¼ ðp; 0Þ. The Floquet discriminant is given by Dðu; kÞ ¼
2 cosðkþ 1

16kÞL and the spectrum by rðLÞ ¼ R
S
ðjkj2 ¼ 1=16Þ: The periodic spectrum is located at

kj ¼
1

2

jp
L

2
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2p2

L2
� 1

4

s 3
5; j 2 Z:

Each of these points is a double point embedded in the continuous spectrum and becomes complex if

06 ð2pj=LÞ2 < 1: As for the NLS equation, the condition for complex double points is exactly the same as

the condition for unstable modes.
3. Multisymplectic finite-difference schemes

Multisymplectic discretizations are numerical schemes for approximating (1) which preserve a discrete

version of the multisymplectic conservation law (4). That is, if the discretization of the multisymplectic PDE

and its conservation law are written schematically as

Moi;jt z
j
i þ Koi;jx z

j
i ¼ ðrzSðzjiÞÞ

j
i ð19Þ

and

oi;jt x
j
i þ oi;jx j

j
i ¼ 0; ð20Þ

where f j
i ¼ f ðxi; tjÞ, and o

i;j
t and oi;jx are discretizations of the corresponding derivatives ot and ox, then the

numerical scheme (19) is said to be multisymplectic if (20) is a discrete conservation law of (19).

A standard method for constructing multisymplectic schemes is to apply a known symplectic discreti-

zation to each independent variable. For example, applying the symplectic midpoint rule (the lowest order
member of the Gauss–Legendre family of schemes) to both the time and space derivatives in (1) yields a MS

‘‘centered cell’’ discretization [3]
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M
z11=2 � z01=2

Dt

 !
þ K

z1=21 � z1=20

Dx

 !
¼ rzSðz1=21=2Þ; ð21Þ

where we use the notation

zj1=2 ¼
1

2
zj0
�

þ zj1
�
; z1=2i ¼ 1

2
z0i
�

þ z1i
�
; z1=21=2 ¼

1

4
ðz00 þ z10 þ z01 þ z11Þ: ð22Þ

Multisymplecticity of scheme (21) is easily established. Associated with (21) is the discrete variational

equation

M
dz11=2 � dz01=2

Dt

 !
þ K

dz1=21 � dz1=20

Dx

 !
¼ Szz dz

1=2
1=2: ð23Þ

Taking the wedge product of dz1=21=2 with (23), note that the right-hand side is zero since Szz is symmetric. The

terms on the left-hand side can be simplified

dz1=21=2 ^Mðdz11=2 � dz01=2Þ ¼
1

2
ðdz11=2 þ dz01=2Þ ^Mðdz11=2 � dz01=2Þ ¼

1

2
ðdz11=2 ^M dz11=2 � dz01=2 ^M dz01=2Þ

¼ x1
1=2 � x0

1=2;

whereas

dz1=21=2 ^ Kðdz1=21 � dz1=20 Þ ¼ 1

2
ðdz1=21 þ dz1=20 Þ ^ Kðdz1=21 � dz1=20 Þ ¼ 1

2
ðdz1=21 ^ K dz1=21 � dz1=20 ^ K dz1=20 Þ

¼ j1=2
1 � j1=2

0 :

This implies that the numerical scheme (21) satisfies the discrete multisymplectic conservation law

x1
1=2 � x0

1=2

Dt

 !
þ j1=2

1 � j1=2
0

Dx

 !
¼ 0:
3.1. The MS-CC discretization for the nonlinear Schr€odinger equation

Applying the centered-cell discretization to the NLS system (7), we obtain the following multisymplectic

scheme:

q11=2 � q01=2
Dt

� v1=21 � v1=20

Dx
¼ 2½ðp1=21=2Þ

2 þ ðq1=21=2Þ
2�p1=21=2;

�
p11=2 � p01=2

Dt
� w1=2

1 � w1=2
0

Dx
¼ 2½ðp1=21=2Þ

2 þ ðq1=21=2Þ
2�q1=21=2;

p1=21 � p1=20

Dx
¼ v1=21=2;

q1=21 � q1=20

Dx
¼ w1=2

1=2:

Eliminating v and w, and recombining into a single complex equation (as before with u ¼ p þ iq) we obtain
the six-point difference scheme for the NLS equation
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iðu1�1=2 þ u11=2 � u0�1=2 � u01=2Þ=Dt þ 2ðu1=2�1 � 2u1=20 þ u1=21 Þ=Dx2 þ 2ju1=2�1=2j
2u1=2�1=2 þ 2ju1=21=2j

2u1=21=2 ¼ 0; ð24Þ

corresponding to the six-point stencil in Fig. 1 [10]. We designate this scheme MS-CC. Higher order

multisymplectic schemes for the NLS equation can be obtained by concatenating higher order members in

the Gauss–Legendre family of schemes [10].

3.1.1. Discrete conservation laws

A discrete form of the local conservation laws is obtained by applying the centered-cell discretization to

(8) and (9). The residuals in the conservation laws are of the form

R1=2
1=2 ¼

E1
1=2 � E0

1=2

Dt
þ F 1=2

1 � F 1=2
0

Dx
; ð25Þ

where notation (22) is being used. The residuals, in general, are not equal to zero. If SðzÞ is a quadratic

functional of z, namely SðzÞ ¼ 1
2
zTAz (A symmetric), and zji is a solution the MS-CC scheme (21), then the

local conservation laws are conserved exactly [3]. In the present case, since the PDEs under consideration

are nonlinear, the local energy and momentum conservation laws will not be preserved exactly. However,

the numerical experiments show that the local conservation laws are preserved very well over long times.
In the numerical experiments, we solve (24) using an iteration scheme and compute the residuals (25) at

each time step.
4. Multisymplectic spectral discretizations

When a higher spatial resolution is demanded by a particular problem, spectral discretizations provide

better approximations than finite-difference discretizations. In this section we show that spectral discreti-
zations yield another class of multisymplectic integrators with associated spectral local conservation laws.

4.1. Multisymplectic PDEs in Fourier space

We start by considering the discrete Fourier transform and its inverse given by

Zk ¼
1

L

Z L=2

�L=2
zðx; tÞe�hkx dx; z ¼

X1
k¼�1

Zke
hkx; hk ¼

2pi
L

k: ð26Þ

Collecting the Zk �s into the vector Z ¼ ð. . . ; Z�1; Z0; Z1; . . .Þ, these formulas hold for Z 2 l2ðZÞ (the set of
square-summable sequences) and z 2 L2½�L=2; L=2� (the set of square-integrable functions on ½�L=2; L=2�).
Letting H be the diagonal matrix with entries given by hk and applying (26) to Eq. (1) yields the infinite-

dimensional system of ODEs [4]
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MotZ þ KHZ ¼ rZ
�S; ð27Þ

where

�S ¼
Z L=2

�L=2
S

X1
k¼�1

Zkehkx
 !

dx:

Eq. (27) can appropriately be called a multisymplectic spectral PDE as there exist associated multisym-

plectic and energy conservation laws in Fourier space

otWþHK ¼ 0; otEþHF ¼ 0;

where W;K;E;F are the discrete Fourier transforms of x; j;E; F , respectively.

4.2. The discrete Fourier transform and its differentiation matrix

We now consider the fully discretized Fourier transform on an N -point grid and show that it yields a

multisymplectic discretization. For N complex discrete values of u, the discrete Fourier transform (DFT)

and its inverse are defined by

Uk ¼ fFðuÞgk ¼
1

N

XN=2�1

j¼�N=2

uje�hkxj ; ð28Þ
uj ¼ fF�1ðUÞgj ¼
XN=2�1

k¼�N=2

Uke
hkxj ; ð29Þ

where uj ¼ uðxjÞ, xj ¼ jDx and Dx ¼ L=N . To approximate the derivative at the grid points, consider the

symmetric extension of (29) [7]

uðxÞ ¼
XN=2�1

k¼�N=2þ1

Uke
hkx þ U�N=2 cos

Np
L

x 8x 2 ½�L=2; L=2�;

where U�N=2 (the Nyquist frequency) is viewed as containing equal contributions from both modes N=2 and

�N=2. Then the derivative at the grid points is approximated by

u0j ¼ fF�1f �HFðuÞggj ¼
XN=2�1

k¼�N=2þ1

hkUke
hkxj ; ð30Þ

where �H has a zero diagonal entry for the Nyquist frequency which does not contribute to the odd de-
rivatives at the grid points.

To show that the spectral discretization given by Eqs. (28) and (30) provides a multisymplectic dis-

cretization, it is convenient to express (30) in terms of a differentiation matrix D,

u0 ¼ Du:

After some calculus, it is found that D is given by

Djk ¼ ð�1Þj�k p
L cot

p
L ðxj � xkÞ if j 6¼ k;

0 if j ¼ k:

�
ð31Þ
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Notice that D is a skew-symmetric matrix. Using the differentiation matrix (31), the multisymplectic

equation (1) becomes

Mzt þ KDz ¼ rzS: ð32Þ

Furthermore, D and K commute in the following sense:

KDz ¼
K11 � � � K1d

..

. ..
.

Kd1 � � � Kdd

0
BB@

1
CCA

Dz1

..

.

Dzd

0
BB@

1
CCA ¼

K11Dz1 þ � � � þK1dDzd

..

.

Kd1Dz1 þ � � � þKddDzd

0
BB@

1
CCA ð33Þ

¼

D K11z1 þ � � � þ K1dzdð Þ
..
.

D Kd1z1 þ � � � þ Kddzdð Þ

0
BB@

1
CCA ¼

DðKzÞ1
..
.

DðKzÞd

0
BB@

1
CCA ¼ DKz: ð34Þ

It is now straightforward to prove that a discretization based on the discrete Fourier transform is multi-

symplectic. Taking the wedge product of dz with the associated variational equation, M dzt þ KDdz ¼
Szz dz, yields

ðdz ^M dzÞt þDdz ^ Kdzþ dz ^ KDdz ¼ 0; ð35Þ

which is a spectral discretization of the multisymplectic conservation law (4). Thus the DFT preserves the
multisymplectic structure of the PDE (1).

4.3. Conservation of total symplecticity

The skew-symmetry ofD provides another important invariant. Let the two formsxj and jjk be defined by

xj ¼
1

2
dzj ^M dzj and jjk ¼

1

2
ðdzj ^ K dzk þ dzk ^ K dzjÞ:

Then we find that the discrete multisymplectic conservation law (35) is given by

otxj þ
XN�1

k¼0

Djkjjk ¼ 0:

Since Djk ¼ �Dkj and jjk ¼ jkj, summing over the spatial index, we arrive at the result

ot
XN�1

j¼0

xj ¼ 0;

which implies that in addition to conservation of local symplecticity, we also have conservation of total

symplecticity in time. This observation partially explains the superior performance of multisymplectic

spectral discretizations in the numerical experiments.

4.4. The discrete local conservation laws

A fully multisymplectic spectral scheme is obtained by using a midpoint rule integration in time

M
z1 � z0

Dt
þ KDz1=2 ¼ rzSðz1=2Þ: ð36Þ
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In this case the residuals in the local conservation laws assume the form

R1=2 ¼ E1 � E0

Dt
þDF 1=2: ð37Þ

It was observed that if SðzÞ is a quadratic functional in z, then the MS-CC scheme conserves the LCLs

exactly. We obtain a similar result for the MS-S scheme.

Theorem 1. If SðzÞ is quadratic in z, SðzÞ ¼ 1
2
zTAz (A symmetric), the MS-S scheme (36) conserves the local

energy and momentum conservation laws exactly.

Proof. Since M is skew-symmetric and A is symmetric, taking the inner product of (36) with z1 � z0, yields

ðz1 � z0ÞTKDz1=2 ¼ Sðz1Þ � Sðz0Þ: ð38Þ

Similarly, since K is skew-symmetric, taking the inner product of (36) with Dz1=2, we obtain

ðDz1=2ÞTM z1 � z0

Dt
¼ DSðz1=2Þ: ð39Þ

Next, using (38) and the definitions (5) of E and F , we find that

E1 � E0

Dt
þDF 1=2 ¼

Sðz1Þ � Sðz0Þ � 1
2
z1

T
KDz1 þ 1

2
z0

T
KDz0

Dt
þD

1

2
z1=2

T
K
z1 � z0

Dt

� �

¼ 1

2Dt
½ðz1 � z0ÞTKDz1=2 þDz1=2

T
Kðz1 � z0Þ� ¼ 0;

which establishes discrete local conservation of energy.

Similarly, using (39) and definitions (5) of I and G, we obtain

I1 � I0

Dt
þDG1=2 ¼

1
2
z1

T
MDz1 � z0

T
MDz0

Dt
þDSðz1=2Þ �D

1

2
z1=2

T
M

z1 � z0

Dt

� �

¼ 1

2Dt
½ðz1 � z0ÞTMDz1=2 þDz1=2

T
Mðz1 � z0Þ� ¼ 0;

which establishes discrete local conservation of momentum. �

4.5. The multisymplectic spectral discretization for the nonlinear Schr€odinger equation

Applying the DFT (28)–(30) to the NLS equation (7) yields the system

otQk � hkVk ¼ oPk
�SðUÞ;

� otPk � hkWk ¼ oQk
�SðUÞ;

hkPk ¼ Vk;

hkQk ¼ Wk;

ð40Þ

which, after taking the inverse DFT, can be recombined into a single equation as

ut � iF�1fH2FðuÞg ¼ 2ijuj2u; ð41Þ

where H is the truncated diagonal matrix with entries hk and u ¼ p þ iq.
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To obtain a fully multisymplectic discretization for the NLS equation, we discretize (41) in time using

the second-order symplectic implicit midpoint rule. Let u0 be the current value and u1 the new value to be

found after one time step. Then the multisymplectic spectral discretization of the NLS equation is given
by

u1 � u0

Dt
� iF�1fH2Fðu1=2Þg ¼ 2iju1=2j2u1=2; ð42Þ

with corresponding residuals in the local energy and momentum conservation laws of the form

R1=2 ¼ E1 � E0

Dt
þ F�1f �HFðF 1=2Þg: ð43Þ

The residuals in the local conservation laws (43) are monitored in the numerical experiments. We solve (41)

with an iteration scheme and compute the local residuals (43) at each time step.

4.6. The multisymplectic spectral discretization for the sine-Gordon equation

Similarly, applying the DFT to the SG equation (12) yields the system

� otVk þ hkWk ¼ fFðsin uÞgk;

otUk ¼ Vk;

� hkUk ¼ �Wk;

ð44Þ

which can also be recombined into the single equation

€Uk ¼ �h2kUk � fFðsin uÞgk: ð45Þ

The separable Hamiltonian, H ¼ T þ V , associated with Eq. (45), allows us to use the general form of the

explicit higher order symplectic integrators given by the following scheme [18]: let u0 ¼ ðp0; q0Þ be the

current solution; set ða0; b0Þ ¼ ðp0; q0Þ and

ai ¼ ai�1 � dtCiV 0ðbi�1Þ;
bi ¼ bi�1 þ dtDiT 0ðaiÞ; i ¼ 1; . . . ;m:

ð46Þ

Then the solution after one time step is given by u1 ¼ ðp1; q1Þ ¼ ðam; bmÞ. The coefficients Ci and Di are

chosen so that the scheme is symplectic and of order OðdtmÞ. For example, a first- and second-order
schemes are given by choosing m ¼ 1, C1 ¼ D1 ¼ 1 and m ¼ 2, C1 ¼ 0, C2 ¼ 1, D1 ¼ D2 ¼ 1

2
, respec-

tively. A fourth-order scheme, S4, can be obtained by forming the following product of second-order

integrators S2:

S4ðdtÞ ¼ S2ðbdtÞS2ðadtÞS2ðbdtÞ; ð47Þ

where a ¼ �21=3b and b ¼ 1=ð2� 21=3Þ. In the numerical experiments the second- and fourth-order schemes

are denoted S-SY2 and S-SY4, respectively.
5. Numerical results

To test the performance of the various multisymplectic methods, we solve the NLS and SG equations

with periodic boundary conditions uðxþ L; tÞ ¼ uðx; tÞ over the time interval ½0; T �. We begin in Section 5.1
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by discussing the preservation of the local conservation laws and the leading constants of motion EðtÞ, IðtÞ
and NðtÞ. In Section 5.2 we investigate the preservation of phase space structure by multisymplectic

discretizations.
5.1. Preservation of local and global conservation laws

For the NLS equation we use initial conditions of the form

u0ðxÞ ¼ að1þ � cos lxÞ; ð48Þ

where a ¼ 0:5, � ¼ 0:1, l ¼ 2p=L, and L is chosen to excite either (a) one mode (L ¼ 2
ffiffiffi
2

p
p) or (b) two

modes (L ¼ 4
ffiffiffi
2

p
p). These initial conditions correspond to a perturbation of the spatially uniform plane

wave. The resulting perturbed spatial profile corresponds to a multi-phase quasi-periodic (in time) solution
of the NLS equation.

Fig. 2 provides the results obtained using MS-CC, Eq. (24), for initial data (48a), with N ¼ 32 and

Dt ¼ 10�3, over the time interval T ¼ 1000. For clarity, in the plots we only show the time slice [950,1000].

The surface of the one mode multi-phase solution (Fig. 2(a)) exhibits quasiperiodic breather motion.

Fig. 2(b)–(c) show the residuals in the local energy and momentum conservation law as given by (25). The

residuals are concentrated in the regions of the multi-phase solution where there are steep gradients. The

corresponding errors in the global energy and momentum over the time interval [950,1000] are given in

Fig. 2(d)–(e). It is interesting to note that the global (i.e. after averaging over space) momentum and norm
(not shown) are conserved exactly (up to the error criterion of 10�14 in the implementation of the scheme)

since they are quadratic invariants. Additionally, the global (i.e. after averaging over time) energy flux is a

quadratic invariant for the spatial symplectic scheme, and therefore is preserved over spatial path to ma-

chine accuracy (see Fig. 2(f)–(g)). Further, bounded oscillations in the errors in the local conservation laws

and global invariants are observed since the multisymplectic schemes are also globally symplectic in time.

These features make the MS-CC a very attractive scheme.

However, the MS-CC can have difficulty resolving the qualitative features of the waveform in highly

sensitive regimes, where the proximity to unstable solutions is an important computational issue. Fig. 3
shows the results obtained using MS-CC for initial data (48b) in the two-mode regime, with N ¼ 64,

Dt ¼ 10�3 and T ¼ 100. MS-CC produces qualitatively incorrect solutions, as can be observed in Fig. 3(a):

instead of quasiperiodic breather motion, the numerical solution quickly develops a temporally chaotic

solution (the onset of the numerically induced temporal chaos is observed at approximately t ¼ 25). In this

scenario temporal chaos is characterized by a random switching in time of the location of the spatial ex-

citations in the waveform. (For the correct behavior see the solution obtained with MS-S, Fig. 4). Fig. 3(b)–

(c) show the residuals in the local energy and momentum conservation law as given by (25) and Fig. 3(c)–(d)

show the errors in the global invariants. Surprisingly, despite the fact that MS-CC preserves the local
conservation laws and the global invariants very well (the errors have bounded oscillations for the duration

of the experiments), correct qualitative behavior in the waveform is not obtained.

Due to the high spatial resolution of the scheme, there are many advantages to using the multisymplectic

spectral method MS-S. Fig. 4 shows the error in the residuals (43), and global energy and momentum using

MS-S, for initial data (48a) in the one-mode regime with N ¼ 32, Dt ¼ 10�3, T ¼ 1000. The surface of the

wave profile obtained using MS-S is essentially identical to that of MS-CC (Fig. 2(a)) and is not shown.

However, the residuals in the local conservation laws and the errors in the global invariants obtained using

MS-S are several orders of magnitude smaller than the errors obtained with MS-CC. For example, the
difference in the error in the local MCL is Oð10�4Þ using the MS-CC scheme, whereas it is Oð10�8Þ using the

MS-S discretization. The global momentum and norm are conserved up to the accuracy of the MS-S



Fig. 2. The multisymplectic scheme MS-CC with N ¼ 32, Dt ¼ 10�3 and T ¼ 1000: (a) surface of the waveform; (b–c) error in the local

energy and momentum conservation law, respectively, (d–e) error in the global energy and momentum, respectively, and (f–g) error in

the spatial global energy and momentum, respectively, for initial data (48a).
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Fig. 3. The multisymplectic scheme MS-CC with N ¼ 64, Dt ¼ 10�3 and T ¼ 100: (a) surface of the waveform; (b–c) error in the local

energy and momentum conservation law, respectively, and (d–e) error in the global energy and momentum, respectively, for initial data

(48b).
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scheme, supporting Theorem 1 on preservation of quadratic invariants. The errors in all the global in-

variants and local conservation laws oscillate and do not exhibit any growth for the duration of the sim-

ulation. It should be pointed out that although the errors obtained with MS-CC are larger, they exhibit no

growth. The difference is due to the spatial accuracy of the schemes (i.e., spectral exponential accuracy vs
finite-difference polynomial accuracy).



Fig. 4. The multisymplectic scheme MS-S with N ¼ 32, Dt ¼ 10�3 and T ¼ 1000: (a–b) error in the local energy and momentum

conservation law, respectively, and (c–d) error in the global energy and momentum, respectively, for initial data (48a).
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The importance of the local conservation laws (and in particular of the local MCL) as an indicator of

spatial discretization errors which can corrupt the solution, is more clearly seen for solutions in the two-

mode regime. As before, the errors in the local conservation laws (Fig. 5(b)–(c)) and global invariants

(Fig. 5(d)–(e)) obtained with MS-S are several orders of magnitude smaller than with MS-CC. As a con-

sequence, MS-S correctly resolves the quasi-periodic motion of multi-phase solutions. The MS-S scheme

produces the correct quasi-periodic breather motion (Fig. 5(a)) for initial data (48b) in the two-mode re-

gime with N ¼ 64, Dt ¼ 10�3 and T ¼ 100. Temporal irregularity and switching in the spatial excitations is
not observed for the duration of the simulation, 0 < t < 100. The global norm and momentum are con-

served within roundoff by MS-S. The experiments suggest that preservation of the momentum conservation

law is more sensitive to spatial refinement and to the complexity of the solution.

In the numerical experiments using MS-S we obtain very well resolved, high fidelity solutions. One

question is whether the same results are obtained using a non-symplectic spectral method. That is, does

specifically preserving multisymplecticity effect the qualitative properties of the numerical solution? Fig. 6

shows the errors in the residuals (43) and global invariants obtained using S-RK2, the non-symplectic (in

time) and spectral (in space) scheme, for initial data (48a) with N ¼ 32, Dt ¼ 10�3 and T ¼ 1000. The most
notable observation is that the errors in the LCLs and global invariants are growing and this growth is due

to the non-symplectic time integrator. By t ¼ 850, the time slice shown in Fig. 6, the errors in the local



Fig. 5. The multisymplectic scheme MS-S with N ¼ 64, Dt ¼ 10�3 and T ¼ 100: (a) surface of the waveform; (b–c) error in the local

energy and momentum conservation law, respectively, and (d–e) error in the global energy and momentum, respectively, for initial data

(48b).
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conservation laws and global invariants have grown to be several orders of magnitude larger than those

obtained with MS-S (MS-S residuals exhibit oscillations which do not grow). Different combinations of N
and Dt produce similar results.



Fig. 6. The spectral scheme S-RK2 with N ¼ 32, Dt ¼ 10�3 and T ¼ 1000: (a–b) error in the local energy and momentum conservation

law, respectively, and (c–d) error in the global energy and momentum, respectively, for initial data (48a).
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5.2. Preservation of the phase space structure

Overall, the constants of motion and LCLS are remarkably well preserved by the MS-S scheme. Since we

expect that the observed difference in resolution of the LCLs will be reflected in the long time global dy-

namics, we next study the preservation of phase space structures by MS-S and S-RK2. In other words, we

investigate whether the multisymplectic property of a numerical scheme effects the scheme�s ability to

preserve phase space structures. To address this issue, we use the nonlinear spectrum (which incorporates

all of the dynamical invariants and determines the phase space structure) as a basis for comparing the

effectiveness of the integrators.

The NLS or SG spectrum is invariant. However, these equations are perturbed by the numerical
truncation errors and the invariance of the spectrum is destroyed. We compute the spectral content of the

initial data and monitor its evolution under the different numerical flows. It is not necessary to determine

the entire Floquet spectrum rðkÞ; we are interested in only the periodic/antiperiodic eigenvalues, the roots

of D� 2. At each time t, we take the numerically generated solution funðtÞ jn ¼ 1; . . . ;Ng and perform the

direct nonlinear spectral transform, i.e. the overdetermined system of ODEs (15) is numerically solved to

obtain the discriminant D. The zero�s of D� 2 are then determined with a root solver which uses Muller�s
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method [15]. The schemes are evaluated in terms of how well the spectrum is resolved. The spectrum is

computed with an accuracy on the order of Oð10�8Þ, whereas for the meshsizes and timesteps used in the

numerical experiments, the numerical schemes are approximately Oð10�6Þ accurate. Thus in the numerical
experiments the spectrum is adequately resolved and the deviations in the spectrum are attributable to the

numerical scheme.

We note here that since we are examining Fourier spectral discretizations, the most appropriate non-

linear spectral diagnostic to use is based on the Lax pair of the PDE. Integrable finite-difference discreti-

zations of the NLS and SG do exist, with corresponding discrete Lax pairs. These discrete Lax pairs

potentially provide alternative diagnostics that are more useful in studying the properties of finite-difference

discretizations of the PDE.

5.2.1. The nonlinear Schr€odinger equation
For the NLS equation we use (48a) which is initial data for a stable multiphase solution and the cor-

responding level sets are stable tori. This initial data is a small perturbation of the plane wave with one

unstable mode, i.e. one complex double point in the spectrum. A perturbation analysis of the plane wave

spectrum shows that for (48a) the primary spectrum is R along with a band-gap structure along the

imaginary axis. (We only refer to elements of spectrum in the upper half plane since the spectrum is

symmetric with respect to the real axis.) The end of the band of spectrum on the imaginary axis is given by

k0. The complex double point has split into two simple points opening a gap (the width of which is de-
termined by jk1 � k2j) in the spectrum [16]. All additional elements of the periodic spectrum, ki, correspond
to stable inactive modes. We monitor the significant elements of the periodic spectrum k0, k1 and k2, along
with the leading higher mode k3.

Fig. 7 provides the results obtained for initial data (48a) using MS-S (left column) and S-RK2 (right

column) with N ¼ 32, Dt ¼ 10�3 and T ¼ 850. A comparison of the errors in the spectral elements k0,
jk1 � k2j and k3 is given, top to bottom. Note that the higher the mode, the less accurately it is resolved:

using both schemes the error obtained in k0 is Oð10�6Þ, the error in jk1 � k2j is Oð10�5Þ, and the error in k3 is
Oð10�4Þ. However, we observe a qualitative difference in the results obtained with MS-S and S-RK2. The
errors in k0 and jk1 � k2j due to S-RK2 exhibit a linear drift that is typical of non-symplectic integrators,

which is not observed using MS-S. Examining the error in the higher radiation modes ki, there is no

qualitative difference in the results obtained with MS-S and S-RK2 (on the timescale examined), as the

comparison of the error in k3 illustrates.
For long time simulations, S-RK2 poorly preserves the two main components of the spectral configu-

ration. Remarkably, the errors obtained with MS-S oscillate but do not grow. This is a significant quali-

tative difference in the ability of the schemes to preserve the spectrum and hence the phase space structure.
5.2.2. The sine-Gordon equation

For the SG (11), we use the following initial data:

uðx; 0Þ ¼ pþ 0:1 cosðlxÞ; utðx; 0Þ ¼ 0

with parameters l ¼ 2p=L and L ¼ 2
ffiffiffi
2

p
p. This initial data is for solutions in the unstable regime as the

zeroth double point remains closed, i.e. the initial data is on the level set containing the homoclinic

manifold. (Closed double points cannot be preserved by the numerical schemes and in the following ex-

periments one observes that the zeroth mode is immediately split into a gap state by the numerical scheme.)

Fig. 8 shows the spectral scheme (46) implemented in time with an explicit second-order Runge–Kutta
(S-RK2) and with the symplectic midpoint integrator (S-SY2). We use N ¼ 32 Fourier modes and a fixed

time step Dt ¼ 10�2. These methods are exponentially accurate in space, which allows for a very accurate

initial approximation of the spectral configuration. To interpret the plots of the errors in the spectrum, note



Fig. 7. Comparison of the error in k0, jk1 � k2j and k3 obtained using MS-S (left column) and S-RK2 (right column) with

N ¼ 32;Dt ¼ 10�3, for initial data (48a).
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Fig. 8. Comparison of the error in jk0 � k1j (left) and in jk2 � k3j (right) for uðx; 0Þ ¼ pþ 0:1 cos lx; utðx; 0Þ ¼ 0, N ¼ 32, T ¼ 500. (top)

S-RK2; (bottom) S-SY2.
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that under the perturbation from the numerical discretization, the complex double points can split in two

ways – either into a gap along an arc of the circle, or into a cross along the radius.

We show a signed measure of the splitting distance in the spectrum associated with the zeroth mode, or

error in jk0 � k1j, as a function of time. Positive and negative values represent gap and cross states, re-

spectively. When the splitting distance passes through zero, the double points coalesce and homoclinic
crossings occur. Using S-RK2 and S-SY2 (Fig. 8), the zeroth mode does display homoclinic crossings, as is

to be expected.

The main observation is that with the non-symplectic S-RK2 there is a Oð10�3Þ linear drift in the error in

jk0 � k1j. The error in jk0 � k1j is smaller with S-SY2 and further, it doesn�t drift. Bounded oscillations are

observed. For both schemes, drifting in the error of the gap width jk2 � k3j (spectrum associated with the

first mode), is not observed and is Oð10�6Þ for 0 < t < 500 and so the torus component is accurately

preserved.
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The drift in the nonlinear spectrum obtained with S-RK2 can be eliminated on the timescale 0 < t < 500

by increasing the accuracy of the integrator and using fourth order symplectic, S-SY4, and non-symplectic,

S-RK4, time implementations of the spectral scheme. In this case the nonlinear spectral deviations are
Oð10�4Þ for both S-RK4 and S-SY4 (Fig. 9).

However, the drift is not eliminated. Fig. 10 shows the results for the time slice 10; 0006 t6 10; 500,
when using N ¼ 32 and Dt ¼ 10�2. Using S-RK4, Fig. 10 shows that the error in jk0 � k1j have drifted to

about 1:2� 10�4 whereas for S-SY4 it continues to oscillate about 5� 10�5. Since the initial data is chosen

on the homoclinic manifold, it is to be expected that there will be a higher density of homoclinic crossings

when the spectrum is more accurately preserved, as the numerical trajectory is trapped in a narrower band

about the homoclinic manifold.

The results obtained in the SG study confirm our previous observations: the multisymplectic scheme
MS-S preserves the phase space structures of interest more accurately than the non-symplectic schemes.

Although the drift observed with non-symplectic schemes can be reduced by using a higher order
Fig. 9. Comparison of the error in jk0 � k1j (left) and in jk2 � k3j (right) for uðx; 0Þ ¼ pþ 0:1 coslx, utðx; 0Þ ¼ 0, N ¼ 32, T ¼ 500.

(top) S-RK4; (bottom) S-SY4.



Fig. 10. Comparison of the error in jk0 � k1j (left) and in jk2 � k3j (right) for uðx; 0Þ ¼ pþ 0:1 coslx, utðx; 0Þ ¼ 0, N ¼ 32,

T ¼ 10; 000–10; 500. (top) S-RK4; (bottom) S-SY4.
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integrator, it is not eliminated and simply results in a poorer long-time preservation of the spectral

configuration.
6. Conclusions

In this paper we have developed and examined the preservation properties of several multisymplectic

integrators for the NLS and SG equations. We find that multisymplectic discretizations provide very ef-

ficient geometric integrators at reasonable computational costs. The numerical experiments indicate that

the geometric features of the system are preserved better by the multisymplectic schemes than by traditional

non-symplectic integrators. We find that the benefits of multisymplectic integrators include improved
resolution of the local conservation laws, dynamical invariants and complicated phase space structures.

This provides a deeper understanding of the local and global properties of MS integrators.

Further insight into the improved resolution of the local conservation laws by the MS schemes in the

numerical experiments is obtained with backward error analysis, where one interprets the numerical so-
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lution as a higher order solution of a modified PDE. For certain MS schemes it has been shown that the

modified PDE is again multisymplectic [17]. In [11], we carry out a backward error analysis of the MS finite-

difference discretization of the NLS equation and verify that the modified local conservation laws are
preserved to higher order by the numerical solution. This further supports the use of MS integrators in long

time numerical simulations of Hamiltonian PDEs.
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